Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning.
نویسندگان
چکیده
In the awake big brown bat, 30 min auditory fear conditioning elicits conditioned heart rate decrease and long-term best frequency (BF) shifts of cortical auditory neurons toward the frequency of the conditioned tone; 15 min conditioning elicits subthreshold cortical BF shifts that can be augmented by acetylcholine. The fear conditioning causes stress and an increase in the cortical serotonin (5-HT) level. Serotonergic neurons in the raphe nuclei associated with stress and fear project to the cerebral cortex and cholinergic basal forebrain. Recently, it has been shown that 5-HT(2A) receptors are mostly expressed on pyramidal neurons and their activation improves learning and memory. We applied 5-HT, an agonist (alpha-methyl-5-HT), or an antagonist (ritanserin) of 5-HT(2A) receptors to the primary auditory cortex and discovered the following drug effects: (1) 5-HT had no effect on the conditioned heart rate change, although it reduced the auditory responses; (2) 4 mm 5-HT augmented the subthreshold BF shifts, whereas 20 mm 5-HT did not; (3) 20 mm 5-HT reduced the long-term BF shifts and changed them into short-term; (4) alpha-methyl-5-HT increased the auditory responses and augmented the subthreshold BF shifts as well as the long-term BF shifts; (5) in contrast, ritanserin reduced the auditory responses and reversed the direction of the BF shifts. Our data indicate that the BF shift can be modulated by serotonergic neurons that augment or reduce the BF shift or even reverse the direction of the BF shift. Therefore, not only the cholinergic system, but also the serotonergic system, plays an important role in cortical plasticity according to behavioral demands.
منابع مشابه
Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudo-conditioning: Role of acetylcholine receptors and the somatosensory cortex Running title: Cortical plasticity elicited by pseudo-conditioning
Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudo-conditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore, the neural circuit evoking the nonspecific changes must also be ...
متن کاملFile : Ji & Suga 2012 - 10 - 31 - R 4 1 2 3 Histaminergic Modulation of Nonspecific Plasticity of 4 the Auditory System and Differential Gating 5 6 Running title : Histaminergic modulation of cortical plasticity
28 In the auditory system of the big brown bat (Eptesicusfuscus), paired conditioned 29 tonal (CS) and unconditioned leg (US) stimuli for auditory fear conditioning elicit tone-30 specific plasticity represented by best frequency (BF) shifts which are augmented by 31 acetylcholine, whereas unpaired CS and US for pseudo-conditioning elicit a small BF 32 shift and prominent nonspecific plasticity...
متن کاملTone-specific and nonspecific plasticity of inferior colliculus elicited by pseudo-conditioning: role of acetylcholine and auditory and somatosensory cortices.
Experience-dependent plasticity in the central sensory systems depends on activation of both the sensory and neuromodulatory systems. Sensitization or nonspecific augmentation of central auditory neurons elicited by pseudo-conditioning with unpaired conditioning tonal (CS) and unconditioned electric leg (US) stimuli is quite different from tone-specific plasticity, called best frequency (BF) sh...
متن کاملTone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: role of acetylcholine receptors and the somatosensory cortex.
Experience-dependent plastic changes in the central sensory systems are due to activation of both the sensory and neuromodulatory systems. Nonspecific changes of cortical auditory neurons elicited by pseudoconditioning are quite different from tone-specific changes of the neurons elicited by auditory fear conditioning. Therefore the neural circuit evoking the nonspecific changes must also be di...
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 18 شماره
صفحات -
تاریخ انتشار 2007